MATH 122B: HOMEWORK 3

Suggested due date: August 22nd 2016

(1) Compute the Laurent expansion of

62

—, 0< < 1.
2(22+1) 12

4
-1

(2) what are the singularities of the function f(z) = %?

sin®(7z)

(3) Assume that z = a is a pole of order N of the function f. Show that it is a pole of order
N + 1 of the function f’.
(4) Compute the residue of the function
TLZn_l
2" —1

at its poles, including infinity. Then prove

_ n—1
nz" 1 1
zm—1 z— Qy
k=0
where «, ..., a,_1 are the roots of unity of order n.

(5) Let C be a simple closed contour and f holomorphic in and on C', with the possibly a finite
number of poles inside C. Show that
1 !
— f —7Z_p
2mi Jo f
where Z denotes the number of zeroes of f and P is the number of poles, both counting
multiplicity, inside C.

dz
(6) Compute /|Z|:2 00 1)(2 = 3)"

(7) Compute the Fresnel integral / sin(z?)dzx.
0

dx

(8) Compute/O PR

(9) Compute / 2Beldz.

|z—1|=4
00 (32

(10) Compute/ o 2($)dx
0 x



MATH 122B: HOMEWORK 3

SOLUTIONS

(1) Computing each Laurent series,
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We combine them to obtain

e* o - . (_1)j n—1
2(224+1) Z (.:0 (n—2j)!> T

n=0 \j

(2) The zeroes of sin(rz) are n € Z. Since the numerator has z*, z = 0 is a removable
singularity. Since (z — 1) is in the numerator but only of linear order, it only cancels with
one order for z = 1, hence z = 1 is a simple pole, and all other positive and negative
integers are poles of order 2.

(3) Since f has a pole of order N at a, in some punctured neighborhood,

_9(®)
f(Z) - (Z . (l)N
where g(a) # 0. Then
oy (2—a)g(z) —Ng(z) _ h(z)
f(Z) = (Z_G)N+1 - (z—a)NH

where h(a) # 0.

(4) The simple poles the n-th roots of unity {62]’”/ ”}Z;S. The residue is

Res(f, ax) = % =1

The residue at infinity can be computed by

Res(f,00) = — Res(%f(%),O)
= —Res(—w(1 —w”)’o) =-n

To prove the identity, we know that there is a partial fraction decomposition

_ n—1
nz"1 Ay

2 —1 z—ak

Solving for the coefficients, we have
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Inserting z = oy, we have

n(ag)"

Ay = ——2
g Iz (0 — ;)

= Res(f,ax) =1

Let zy,..., 2, be the zeroes and py,...p, be the poles. Since the zeroes and poles are
isolated, we can cover each by a ball so that the integral becomes the sum of the integral
around each zero and pole

Let C; contain the zeroes and let D; contain the poles so

5 Es (L) 2 ()

Around each zero, z;, we can write f as

where ¢(z;) # 0. Then

therefore

2 (] 7) 2

Around each pole, we can write f as

RUC)
f(2> - (Z _pi>m1
where h(p;) # 0. Hence
frn m;

therefore

1 I
w2 ([, F)=Sm=r

(6) Use 3,2 Res(f, ax) = — Res(f,3) — Res(f, 00).

(7) Using the contour
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Rexp(®i/g)

Cr

0 R

with T'g as the circular portion and ~ as the line towards the origin at 7/4, we split the

integral as
-2 R . 2 -2 -2
O:/ e”dz:/ emdx+/ e’zdz+/e”dz.
Cr 0 I'r Y

By the inequality — sin(26) < n0<6<7,

/ ¢ dz| = |Ri / IR i g
R 0
w/4
< R/ €_R28m(20)d(9
0

w/4 )
< R/ 6_4R H/Trde
0

we have

RIS

Rﬂ' _p2
:—4—R2(€ R —1)—>O

as R — oo. To compute the integral along v, we have

R
. 2 . 2
/e” dz——e“r/4/ e "dr

0% 0

as R — 0. Matching the real and imaginary parts, we get

/ sin(z?)dr = @
0 4

(8) Similar and easier method as above, answer is ﬁi

(9) Straightforward application of residue theorem, computing the Laurent series, we have

1111 1
Pt =Pt~ 5t g+ 52 T 0(5)

so the 1/z term is ;. Thus by residue theorem, the answer is

o0 12 o0 _
4/ sin 2(1:)d$ :/ 1 co2s(2x)dm.
0 x _ x

o0

27
4

(10) Consider the integral

To integrate, we integrate along the contour Cgr
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where the outer circle is ' and the inner circle is 7,. Then the integral splits as

1 — 12z U - 12z R 1 — 2z 1 — 2z 1— 12z
/ - dz:/ - dz+/ . dz+/ - dz+/ -
Cr z R z r z T'r z T z

1—42z

We can show that / 5
e *
parametrizing z = re? for 6 from 7 to 0, so that

2z T i2ret?
l1—e B 1—e .0
dz = — ——7rie"’dl
52 r2e2i0
Yr 0

T . 0o i2retf)n
. / —(2ire®) — 3o, )
0

dz — 0 as R — oo. So we integrate the smaller circle by

e 40

,
=21+0(r) —» —27

as r — 0. Hence the answer is m/2.



	Solutions

