MATH 122B: HOMEWORK 3

Suggested due date: August 22nd 2016

(1) Compute the Laurent expansion of

$$
\frac{e^{z}}{z\left(z^{2}+1\right)}, \quad 0<|z|<1
$$

(2) what are the singularities of the function $f(z)=\frac{z^{4}(z-1)}{\sin ^{2}(\pi z)}$?
(3) Assume that $z=a$ is a pole of order N of the function f. Show that it is a pole of order $N+1$ of the function f^{\prime}.
(4) Compute the residue of the function

$$
\frac{n z^{n-1}}{z^{n}-1}
$$

at its poles, including infinity. Then prove

$$
\frac{n z^{n-1}}{z^{n}-1}=\sum_{k=0}^{n-1} \frac{1}{z-\alpha_{k}}
$$

where $\alpha_{0}, \ldots, \alpha_{n-1}$ are the roots of unity of order n.
(5) Let C be a simple closed contour and f holomorphic in and on C, with the possibly a finite number of poles inside C. Show that

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}}{f}=Z-P
$$

where Z denotes the number of zeroes of f and P is the number of poles, both counting multiplicity, inside C.
(6) Compute $\int_{|z|=2} \frac{d z}{\left(z^{1000}+1\right)(z-3)}$.
(7) Compute the Fresnel integral $\int_{0}^{\infty} \sin \left(x^{2}\right) d x$.
(8) Compute $\int_{0}^{\infty} \frac{d x}{x^{4}+1}$.
(9) Compute $\int_{|z-1|=4} z^{3} e^{1 / z} d z$.
(10) Compute $\int_{0}^{\infty} \frac{\sin ^{2}(x)}{x^{2}} d x$.

Solutions

(1) Computing each Laurent series,

$$
\begin{aligned}
e^{z} & =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \\
\frac{1}{1+z^{2}} & =\sum_{k=0}^{\infty}(-1)^{k} z^{2 k}
\end{aligned}
$$

We combine them to obtain

$$
\frac{e^{z}}{z\left(z^{2}+1\right)}=\sum_{n=0}^{\infty}\left(\sum_{j=0}^{n} \frac{(-1)^{j}}{(n-2 j)!}\right) z^{n-1}
$$

(2) The zeroes of $\sin (\pi z)$ are $n \in \mathbb{Z}$. Since the numerator has $z^{4}, z=0$ is a removable singularity. Since $(z-1)$ is in the numerator but only of linear order, it only cancels with one order for $z=1$, hence $z=1$ is a simple pole, and all other positive and negative integers are poles of order 2.
(3) Since f has a pole of order N at a, in some punctured neighborhood,

$$
f(z)=\frac{g(z)}{(z-a)^{N}}
$$

where $g(a) \neq 0$. Then

$$
f^{\prime}(z)=\frac{(z-a) g^{\prime}(z)-N g(z)}{(z-a)^{N+1}}=\frac{h(z)}{(z-a)^{N+1}}
$$

where $h(a) \neq 0$.
(4) The simple poles the n-th roots of unity $\left\{e^{2 k \pi / n}\right\}_{k=0}^{n-1}$. The residue is

$$
\operatorname{Res}\left(f, \alpha_{k}\right)=\frac{n\left(\alpha_{k}\right)^{n-1}}{n\left(\alpha_{k}\right)^{n-1}}=1
$$

The residue at infinity can be computed by

$$
\begin{aligned}
\operatorname{Res}(f, \infty) & =-\operatorname{Res}\left(\frac{1}{w^{2}} f\left(\frac{1}{w}\right), 0\right) \\
& =-\operatorname{Res}\left(\frac{n}{w\left(1-w^{n}\right)}, 0\right)=-n
\end{aligned}
$$

To prove the identity, we know that there is a partial fraction decomposition

$$
\frac{n z^{n-1}}{z^{n}-1}=\sum_{k=0}^{n-1} \frac{A_{k}}{z-\alpha^{k}}
$$

Solving for the coefficients, we have

$$
n z^{n-1}=\sum_{k=0}^{n-1} A_{k} \Pi_{i \neq k}\left(z-\alpha_{i}\right)
$$

Inserting $z=\alpha_{k}$, we have

$$
A_{k}=\frac{n\left(\alpha_{k}\right)^{n-1}}{\Pi_{i \neq k}\left(\alpha_{k}-\alpha_{i}\right)}=\operatorname{Res}\left(f, \alpha_{k}\right)=1
$$

(5) Let z_{1}, \ldots, z_{n} be the zeroes and $p_{1}, \ldots p_{m}$ be the poles. Since the zeroes and poles are isolated, we can cover each by a ball so that the integral becomes the sum of the integral around each zero and pole

Let C_{i} contain the zeroes and let D_{i} contain the poles so

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}}{f}=\frac{1}{2 \pi i} \sum_{i}\left(\int_{C_{i}} \frac{f^{\prime}}{f}\right)+\frac{1}{2 \pi i} \sum_{j}\left(\int_{D_{i}} \frac{f^{\prime}}{f}\right)
$$

Around each zero, z_{i}, we can write f as

$$
f(z)=g(z)\left(z-z_{i}\right)^{n_{i}}
$$

where $g\left(z_{i}\right) \neq 0$. Then

$$
\frac{f^{\prime}}{f}=\frac{g^{\prime}}{g}+\frac{n_{i}}{\left(z-z_{i}\right)}
$$

therefore

$$
\frac{1}{2 \pi i} \sum_{i}\left(\int_{C_{i}} \frac{f^{\prime}}{f}\right)=\sum_{i} n_{i}=Z
$$

Around each pole, we can write f as

$$
f(z)=\frac{h(z)}{\left(z-p_{i}\right)^{m_{i}}}
$$

where $h\left(p_{i}\right) \neq 0$. Hence

$$
\frac{f^{\prime}}{f}=\frac{h^{\prime}}{h}-\frac{m_{i}}{\left(z-p_{i}\right)}
$$

therefore

$$
\frac{1}{2 \pi i} \sum_{i}\left(\int_{D_{i}} \frac{f^{\prime}}{f}\right)=-\sum_{i} m_{i}=-P
$$

(6) Use $\sum_{k=1}^{1000} \operatorname{Res}\left(f, \alpha_{k}\right)=-\operatorname{Res}(f, 3)-\operatorname{Res}(f, \infty)$.
(7) Using the contour

with Γ_{R} as the circular portion and γ as the line towards the origin at $\pi / 4$, we split the integral as

$$
0=\int_{C_{R}} e^{i z^{2}} d z=\int_{0}^{R} e^{i x^{2}} d x+\int_{\Gamma_{R}} e^{i z^{2}} d z+\int_{\gamma} e^{i z^{2}} d z
$$

By the inequality $-\sin (2 \theta) \leq \frac{4 \theta}{\pi}$ on $0 \leq \theta \leq \frac{\pi}{4}$, we have

$$
\begin{aligned}
\left|\int_{R} e^{i z^{2}} d z\right| & =\left|R i \int_{0}^{\pi / 4} e^{i R^{2} e^{i 2 \theta}} e^{i \theta} d \theta\right| \\
& \leq R \int_{0}^{\pi / 4} e^{-R^{2} \sin (2 \theta)} d \theta \\
& \leq R \int_{0}^{\pi / 4} e^{-4 R^{2} \theta / \pi} d \theta \\
& =-\frac{R \pi}{4 R^{2}}\left(e^{-R^{2}}-1\right) \rightarrow 0
\end{aligned}
$$

as $R \rightarrow \infty$. To compute the integral along γ, we have

$$
\begin{aligned}
\int_{\gamma} e^{i z^{2}} d z & =-e^{i \pi / 4} \int_{0}^{R} e^{-r^{2}} d r \\
& \rightarrow-\frac{\pi}{2}\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

as $R \rightarrow 0$. Matching the real and imaginary parts, we get

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\frac{\sqrt{2 \pi}}{4}
$$

(8) Similar and easier method as above, answer is $\frac{\pi}{2 \sqrt{2}}$.
(9) Straightforward application of residue theorem, computing the Laurent series, we have

$$
z^{3} e^{1 / z}=z^{3}\left(1+\frac{1}{z}+\frac{1}{2 z^{2}}+\frac{1}{3!z^{3}}+\frac{1}{4!} z^{4}+O\left(\frac{1}{z^{5}}\right)\right)
$$

so the $1 / z$ term is $\frac{1}{4!}$. Thus by residue theorem, the answer is $\frac{2 \pi i}{4!}$.
(10) Consider the integral

$$
4 \int_{0}^{\infty} \frac{\sin ^{2}(x)}{x^{2}} d x=\int_{-\infty}^{\infty} \frac{1-\cos (2 x)}{x^{2}} d x
$$

To integrate, we integrate along the contour C_{R}

where the outer circle is Γ_{R} and the inner circle is γ_{r}. Then the integral splits as
$\int_{C_{R}} \frac{1-e^{i 2 z}}{z^{2}} d z=\int_{-R}^{-r} \frac{1-e^{i 2 z}}{z^{2}} d z+\int_{r}^{R} \frac{1-e^{i 2 z}}{z^{2}} d z+\int_{\Gamma_{R}} \frac{1-e^{i 2 z}}{z^{2}} d z+\int_{\gamma_{r}} \frac{1-e^{i 2 z}}{z^{2}} d z$
We can show that $\int_{\Gamma_{R}} \frac{e^{1-i 2 z}}{z^{2}} d z \rightarrow 0$ as $R \rightarrow \infty$. So we integrate the smaller circle by parametrizing $z=r e^{i \theta}$ for θ from π to 0 , so that

$$
\begin{aligned}
\int_{\gamma_{r}} \frac{1-e^{i 2 z}}{z^{2}} d z & =-\int_{0}^{\pi} \frac{1-e^{i 2 r e^{i \theta}}}{r^{2} e^{2 i \theta}} r i e^{i \theta} d \theta \\
& =-i \int_{0}^{\pi} \frac{-\left(2 i r e^{i \theta}\right)-\sum_{n=2}^{\infty} \frac{\left(i 2 r e^{i \theta}\right)^{n}}{n!}}{r} e^{-i \theta} d \theta \\
& =-2 \pi+O(r) \rightarrow-2 \pi
\end{aligned}
$$

as $r \rightarrow 0$. Hence the answer is $\pi / 2$.

