
MATH 122B: HOMEWORK 3

Suggested due date: August 22nd 2016

(1) Compute the Laurent expansion of

ez

z(z2 + 1)
, 0 < |z| < 1.

(2) what are the singularities of the function f(z) =
z4(z − 1)

sin2(πz)
?

(3) Assume that z = a is a pole of order N of the function f . Show that it is a pole of order
N + 1 of the function f ′.

(4) Compute the residue of the function

nzn−1

zn − 1

at its poles, including infinity. Then prove

nzn−1

zn − 1
=

n−1∑
k=0

1

z − αk

where α0, . . . , αn−1 are the roots of unity of order n.

(5) Let C be a simple closed contour and f holomorphic in and on C, with the possibly a finite
number of poles inside C. Show that

1

2πi

∫
C

f ′

f
= Z − P

where Z denotes the number of zeroes of f and P is the number of poles, both counting
multiplicity, inside C.

(6) Compute

∫
|z|=2

dz

(z1000 + 1)(z − 3)
.

(7) Compute the Fresnel integral

∫ ∞
0

sin(x2)dx.

(8) Compute

∫ ∞
0

dx

x4 + 1
.

(9) Compute

∫
|z−1|=4

z3e1/zdz.

(10) Compute

∫ ∞
0

sin2(x)

x2
dx.

1
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Solutions

(1) Computing each Laurent series,

ez =
∞∑
n=0

zn

n!

1

1 + z2
=
∞∑
k=0

(−1)kz2k

We combine them to obtain

ez

z(z2 + 1)
=
∞∑
n=0

(
n∑
j=0

(−1)j

(n− 2j)!

)
zn−1.

(2) The zeroes of sin(πz) are n ∈ Z. Since the numerator has z4, z = 0 is a removable
singularity. Since (z − 1) is in the numerator but only of linear order, it only cancels with
one order for z = 1, hence z = 1 is a simple pole, and all other positive and negative
integers are poles of order 2.

(3) Since f has a pole of order N at a, in some punctured neighborhood,

f(z) =
g(z)

(z − a)N

where g(a) 6= 0. Then

f ′(z) =
(z − a)g′(z)−Ng(z)

(z − a)N+1
=

h(z)

(z − a)N+1

where h(a) 6= 0.

(4) The simple poles the n-th roots of unity {e2kπ/n}n−1
k=0 . The residue is

Res(f, αk) =
n(αk)

n−1

n(αk)n−1
= 1

The residue at infinity can be computed by

Res(f,∞) = −Res(
1

w2
f(

1

w
), 0)

= −Res(
n

w(1− wn)
, 0) = −n

To prove the identity, we know that there is a partial fraction decomposition

nzn−1

zn − 1
=

n−1∑
k=0

Ak
z − αk

Solving for the coefficients, we have

nzn−1 =
n−1∑
k=0

AkΠi 6=k(z − αi)
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Inserting z = αk, we have

Ak =
n(αk)

n−1

Πi 6=k(αk − αi)
= Res(f, αk) = 1

(5) Let z1, . . . , zn be the zeroes and p1, . . . pm be the poles. Since the zeroes and poles are
isolated, we can cover each by a ball so that the integral becomes the sum of the integral
around each zero and pole

Let Ci contain the zeroes and let Di contain the poles so

1

2πi

∫
C

f ′

f
=

1

2πi

∑
i

(∫
Ci

f ′

f

)
+

1

2πi

∑
j

(∫
Di

f ′

f

)
Around each zero, zi, we can write f as

f(z) = g(z)(z − zi)ni

where g(zi) 6= 0. Then
f ′

f
=
g′

g
+

ni
(z − zi)

therefore
1

2πi

∑
i

(∫
Ci

f ′

f

)
=
∑
i

ni = Z.

Around each pole, we can write f as

f(z) =
h(z)

(z − pi)mi

where h(pi) 6= 0. Hence
f ′

f
=
h′

h
− mi

(z − pi)
therefore

1

2πi

∑
i

(∫
Di

f ′

f

)
= −

∑
i

mi = −P.

(6) Use
∑1000

k=1 Res(f, αk) = −Res(f, 3)− Res(f,∞).

(7) Using the contour
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with ΓR as the circular portion and γ as the line towards the origin at π/4, we split the
integral as

0 =

∫
CR

eiz
2

dz =

∫ R

0

eix
2

dx+

∫
ΓR

eiz
2

dz +

∫
γ

eiz
2

dz.

By the inequality − sin(2θ) ≤ 4θ
π

on 0 ≤ θ ≤ π
4
, we have∣∣∣∣∫

R

eiz
2

dz

∣∣∣∣ =

∣∣∣∣∣Ri
∫ π/4

0

eiR
2ei2θeiθdθ

∣∣∣∣∣
≤ R

∫ π/4

0

e−R
2 sin(2θ)dθ

≤ R

∫ π/4

0

e−4R2θ/πdθ

= − Rπ
4R2

(e−R
2 − 1)→ 0

as R→∞. To compute the integral along γ, we have∫
γ

eiz
2

dz = −eiπ/4
∫ R

0

e−r
2

dr

→ −π
2

(

√
2

2
+ i

√
2

2
),

as R→ 0. Matching the real and imaginary parts, we get∫ ∞
0

sin(x2)dx =

√
2π

4

(8) Similar and easier method as above, answer is π
2
√

2
.

(9) Straightforward application of residue theorem, computing the Laurent series, we have

z3e1/z = z3(1 +
1

z
+

1

2z2
+

1

3!z3
+

1

4!
z4 +O(

1

z5
))

so the 1/z term is 1
4!

. Thus by residue theorem, the answer is 2πi
4!

.

(10) Consider the integral

4

∫ ∞
0

sin2(x)

x2
dx =

∫ ∞
−∞

1− cos(2x)

x2
dx.

To integrate, we integrate along the contour CR
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where the outer circle is ΓR and the inner circle is γr. Then the integral splits as∫
CR

1− ei2z

z2
dz =

∫ −r
−R

1− ei2z

z2
dz +

∫ R

r

1− ei2z

z2
dz +

∫
ΓR

1− ei2z

z2
dz +

∫
γr

1− ei2z

z2
dz

We can show that

∫
ΓR

e1−i2z

z2
dz → 0 as R → ∞. So we integrate the smaller circle by

parametrizing z = reiθ for θ from π to 0, so that∫
γr

1− ei2z

z2
dz = −

∫ π

0

1− ei2reiθ

r2e2iθ
rieiθdθ

= −i
∫ π

0

−(2ireiθ)−
∑∞

n=2
(i2reiθ)n

n!

r
e−iθdθ

= −2π +O(r)→ −2π

as r → 0. Hence the answer is π/2.
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